skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Svistunov, Boris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While the properties of standard (single-component) superfluids are well understood, principal differences arise in a special type of multicomponent systems—the so-called Borromean supercounterfluids—in which (i) supertransport is possible only in the counterflow regime and (ii) there are three or more counterflowing components. Borromean supercounterfluids's correlation and topological properties distinguish them from their single- and two-component counterparts. The component-symmetric case characterized by a distinctively different universality class of the supercounterfluid-to-normal phase transition is especially interesting. Using the recently introduced concept of compact-gauge invariance as the guiding principle, we develop the finite-temperature description of Borromean supercounterfluids in terms of an asymptotically exact long-wave effective action. We formulate and study Borromean X Y and loop statistical models, capturing the universal long-range properties and allowing us to perform efficient worm algorithm simulations. Numeric results demonstrate perfect agreement with analytic predictions. Particularly instructive is the two-dimensional case, where the Borromean nature of the system is strongly manifested while allowing for an asymptotically exact analytic description. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Superclimbing dynamics is the signature feature of transverse quantum fluids describing wide superfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. Using Lagrangian formalism, we show how the essence of the superclimb phenomenon—dynamic conjugation of the fields of the superfluid phase and geometric shape—clearly manifests itself via characteristic modes of autonomous motion of the insulating domain (“droplet”) with superclimbing edges. In the translation invariant case and in the absence of supercurrent along the edge, the droplet demonstrates ballistic motion with the velocity-dependent shape and zero bulk currents. In an isotropic trapping potential, the droplet features a doubly degenerate sloshing mode. The period of the ground-state evolution of the superfluid phase (dictating the frequency of the AC Josephson effect) is sensitive to the geometry of the droplet. The supercurrent along the edge dramatically changes the droplet dynamics: The motion acquires features resembling that of a two-dimensional charged particle interacting with a perpendicular magnetic field. In a linear external potential (uniform force field), the state with a supercurrent demonstrates a spectacular gyroscopic effect—uniform motion in the perpendicular to the force direction. Published by the American Physical Society2024 
    more » « less
  3. Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in4He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order atT= 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying the Landau criterion in particular. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026